Service

Planetary Screw Assemblies PLSA

R310EN 3308 (2011-09)

The Drive & Control Company

Planetary Screw Assemblies PLSA

Product Overview	3
Nuts, Screws, Screw Ends, Bearings	3
Planetary Screw Assembly – Definition	4
Application Examples	6
Inquiries and Orders	8
Nuts	10
Cylindrical Single Nut ZEM-E-S	10
Flanged Single Nut FEM-E-S	12
Flanged Single Nut, split FDM-E-S	14
Screws	16
Precision Screw PSR	16
Screw Ends	17
Form 002	17
Form 312	18
Form 412	20
Form 812 and 822	22
Form 832 and 842	24
Bearings	26
Bearing unit LAF	26
Bearing unit LAN	28
Bearing unit LAD	30
Bearing unit LAS	32
Bearing unit FEC-F	34
Slotted Nuts and Housing Nuts	36
Slotted Nuts NMA for Fixed Bearings	36
Technical Data	38
Acceptance Conditions and Tolerance Grades	41
Preload, Rigidity, Friction Torques	44
Mounting	46
End Bearings	48
Design Notes, Mounting Instructions	48
Lubrication	49
Design Calculations	50
End Bearings	56
Design Calculations	56
Design Calculation Service Form	58

Product Overview

Nuts, Screws, Screw Ends, Bearings

Nuts		Page
Cylindrical Single nut		10
	100	
ZEM-E-S		
with backlash	and the second s	
Flanged Single Nut	*	12
Flanged Single Nut		12
FEM-E-S		
with backlash	Same and the second sec	
Flanged Single Nut		14
split	~	
FDM-E-S	100	
preloaded		
Screws		
Precision-rolled screw		16
PSR	Ŕ	
Tolerance grades		
T5, T7, T9	Millitur	
Acceptance conditions		41
Screw end machining		
		17
	Charles Charles	
Bearings		
LAF	~ 4	26
LAN		28
LAN		20
LAD		30
LAS		32
-		
	0	
FEC-F		34

Diameter d ₀	Lead P					
(mm)	(mm)					
	5	10				
20	Х	-				
30	Х	Х				
48	Х	Х				

Product Overview

Planetary Screw Assembly – Definition

The Planetary Screw Assembly PLSA is an assembly comprising a screw with planets as the rolling elements. It serves to convert rotary motion into linear motion and vice versa.

The function principle of a planetary screw assembly is easy to describe, but the range of designs and the requirements for practical applications are many and varied.

Planetary Screw Assemblies are designed to transmit high forces and extend the Screw Drives product portfolio at the upper end.

Planetary Screw Assemblies are screw drives in which threaded rollers (the planets) are housed in a screw nut, their ends being lodged in discs with holes arranged around a pitch circle so that they rotate parallel to the axis of a special screw, causing the nut to move linearly along the screw.

Rexroth Planetary Screw Assemblies offer designers many opportunities to solve transport and positioning tasks in configurations with a driven screw. At Rexroth you will be sure to find exactly the kind of tailor-made products you need for special applications.

Structural Design:

Both the screw and the nut have an identical multi-start profile with a flank angle of 90°.

The planets have journals at both ends with are lodged in holes bored in the guide discs. The toothed ends of the planets engage with the internal gear rings of the nut. The planets have single-start threads and crowned flanks that roll without slipping along the nut threads.

At each end of the nut there is an internally geared ring which engages with the external gearing on the planets. Guide discs inside the gear rings support the planets' journals and ensure that they are correctly spaced. The discs also prevent coarse dirt from working its way into the nut.

Versions:

- Cylindrical Single Nut with backlash (ZEM-E-S)
- Flanged Single Nut with backlash (FEM-E-S)
- Flanged Single Nut, split, preloaded (FDM-E-S)

Precision Screws PSR

Bosch Rexroth has a long tradition of manufacturing precision screws. Offered in many sizes and in unmatched quality, these have for years been essential components in our Ball Screw Assemblies product range.

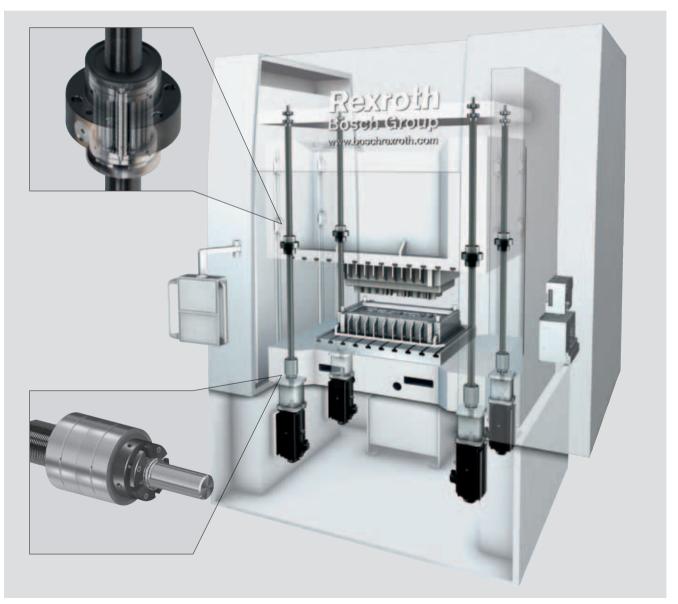
We have transferred this tried and trusted manufacturing technology to the screws of our Planetary Screw Assemblies. For users, this results in many advantages, including the following:

- Identical quality to Rexroth Ball Screw Assemblies
- Fast delivery
- Attractive prices thanks to cost-effective manufacturing

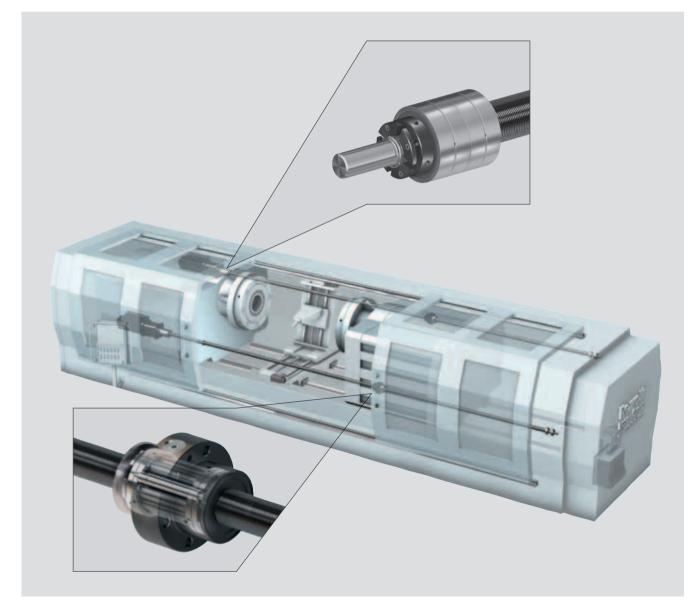
Advantages

- Smooth functioning due to the synchronized movement of the planets
- Very low noise
- High linear travel speedsLarge number of contact points
- High load ratings
- High mechanical efficiency
- Long life
- Compact design
- High power density
- Effective wiper seals
- Low lubricant consumption
- Preloaded units available
- High positioning accuracy and repeatability

Product Overview


Application Examples

Rexroth Planetary Screw Assemblies are used with great success in many different application areas:


- Plastic injection molding machines
- Machine tools
- Measuring and material testing machines
- Robots
- Automotive industry
- Aerospace industry
- Automation and handling
- Food and packaging industries

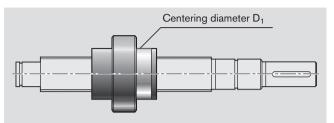
Electric press

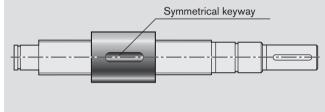
- Printing and paper industry
- Medical technology
- Cutting operations
- Forming operations
- Metals industry

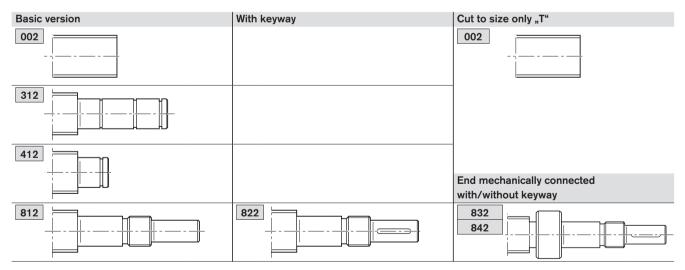
Friction welding machine

Product Overview

Inquiries and Orders


Nut type


The various series versions and forms are shown below.


Mounting direction of nut types

Definition: The centering diameter on a nut with flange points to the right end of the screw. For cylindrical nuts, the mounting direction can be chosen at will (symmetrical).

Screw ends, forms for a left or right screw end

Machining of end face

Z Centering hole DIN 332-D

S Hex socket

Complete PLSA (screw and nut)

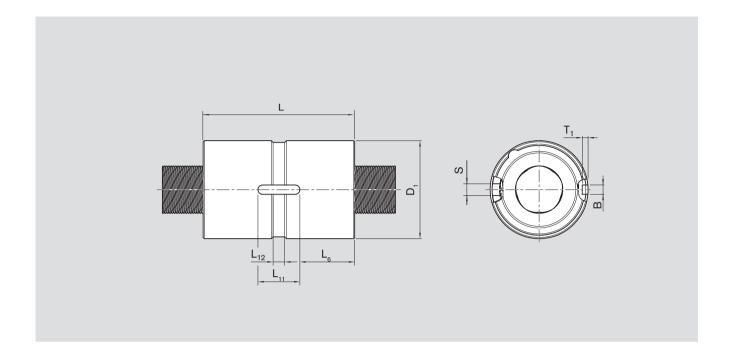
Planetary Scr	rew Assembly	FEM-E-S	20 x 5R	1 0	T7 F	R 812Z120	412Z120	1250	1	1
FEM-E-S Flang	drical Single nut ged Single Nut ged Single Nut, split									
Le	ominal diameter (mm) – — ead (mm) – – – – – – rection of lead R … right		'							
Seal	0 none 1 standard seal			4						
Preload	0 standard backlash1 standard preload (for	FDM-E-S only)								
Precision	T5, T7, T9									
Screw	R precision screw									
Left screw en	1d Form – — – – Option – – – – – Version	7 centering	per DIN 332-D		-					
Right screw e	see left screw en	d								
Overall lengt	h L _{tot} (mm)									
Documentation	on 1 standard (accept – is always suppl 3 lead test report			que test ad and to		est report				
Lubrication	1 preserved and n 2 preserved	ut with basic gre	asing							

Nuts

Cylindrical Single Nut ZEM-E-S

- With standard seals
- With backlash max. 0.03 mm
- For precision screws PSR in tolerance grade T5, T7, T9

Note: Delivered only as a complete unit.



Ordering code											
PLSA:	ZEM-E-S	20 x 5R	1	0	T7	R	822Z120	412Z120	1250	1	1

d ₀ x P	Nr.	C	Co	v _{max} 1)
		(kN)	(kN)	(m/min)
20 x 5R	R157C A10 03	55	80	37.5
30 x 5R	R157C 310 13	87	178	25.0
30 x 10R	R157C 330 03	101	174	50.0
48 x 5R	R157C 610 03	188	481	15.6
48 x 10R	R157C 630 03	220	475	31.2

1) See page 54 Characteristic speed and page 55 Critical speed

- C = dynamic load rating
- C_0 = static load rating
- $d_0 x P = size$
- d₀ = nominal diameter
- Nr. = part number
- P = lead (R = right-hand)
- S = lube port
- v_{max} = maximum linear speed

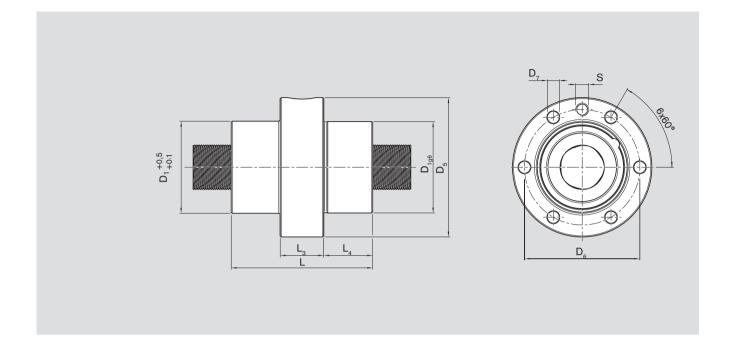
d ₀ x P	(mm)						
	D _{1 g6}	L	B ^{P9}	L ₆	L ₁₁ ^{+0,2}	L ₁₂	T ₁ ^{+0,1}
20 x 5R	42	65	4	23.5	18	5	2.5
30 x 5R	64	85	6	26.5	32	5	3.5
30 x 10R	64	85	6	26.5	32	5	3.5
48 x 5R	100	127	8	41.0	45	7	4.0
48 x 10R	100	127	8	41.0	45	7	4.0

Nuts

Flanged Single Nut FEM-E-S

- With standard seals
- With backlash max. 0.03 mm
- For precision screws PSR _ in tolerance grade T5, T7, T9

Note: Delivered only as a complete unit.



Ordering code											
PLSA:	FEM-E-S	20 x 5R	1	0	Τ5	R	812Z120	412Z120	1100	1	1

d ₀ x P	Nr.	C	Co	V _{max} ¹⁾
		(kN)	(kN)	(m/min)
20 x 5R	R157C A10 01	55	80	37.5
30 x 5R	R157C 310 11	87	178	25.0
30 x 10R	R157C 330 01	101	174	50.0
48 x 5R	R157C 610 01	188	481	15.6
48 x 10R	R157C 630 01	220	475	31.2

1) See page 54 Characteristic speed and page 55 Critical speed

- С dynamic load rating =
- C_0 = static load rating
- $d_0 \times P =$ size
- = nominal diameter do
- Nr. part number =
- Р = lead (R = right-hand) S
 - = lube port
- = maximum linear speed V_{max}

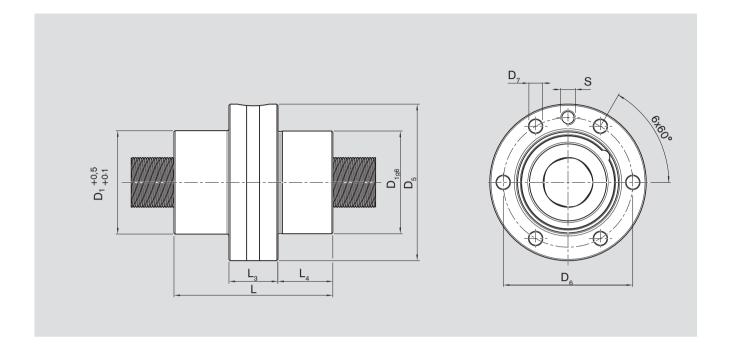
d ₀ x P	(mm)							
	D ₁	D ₅	L	D ₆	D ₇	L ₃	L ₄	S
20 x 5R	42	64	65	53	5.5	20.0	22.5	M6
30 x 5R	64	98	85	81	9.0	27.0	29.0	M6
30 x 10R	64	98	85	81	9.0	27.0	29.0	M6
48 x 5R	105	150	127	127	13.5	37.0	45.0	M8 x 1
48 x 10R	105	150	127	127	13.5	37.0	45.0	M8 x 1

Nuts

Flanged Single Nut, split FDM-E-S

- With standard seals
- With preload
- For precision screws PSR in tolerance grade T5, T7

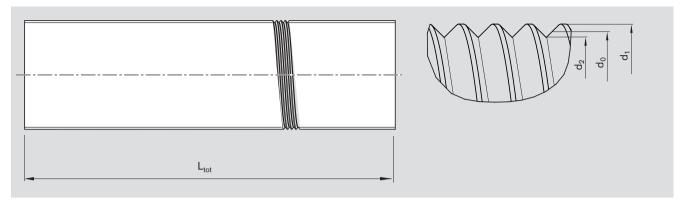
Note: Delivered only as a complete unit.



Ordering code											
	FDM-E-S	20 x 5R	1	0	T5	R	812Z120	412Z120	1100	1	1

d ₀ x P	Nr.	С	Co	v _{max} 1)
		(kN)	(kN)	(m/min)
20 x 5R	R157C A10 02	32	40	37.5
30 x 5R	R157C 310 12	50	89	25.0
30 x 10R	R157C 330 02	58	87	50.0
48 x 5R	R157C 610 02	109	240	15.6
48 x 10R	R157C 630 02	127	237	31.2

1) See page 54 Characteristic speed and page 55 Critical speed


- C = dynamic load rating
- C_0 = static load rating
- $d_0 x P = size$
- $d_0 = nominal diameter$
- Nr. = part number
- P = lead (R = right-hand)
- S = lube port
- v_{max} = maximum linear speed

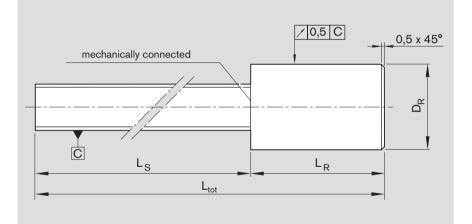
d ₀ x P	(mm)							
	D ₁	D ₅	L	D ₆	D ₇	L ₃	L ₄	s
20 x 5R	42	64	65	53	5.5	20.0	22.5	M6
30 x 5R	64	98	85	81	9.0	27.0	29.0	M6
30 x 10R	64	98	85	81	9.0	27.0	29.0	M6
48 x 5R	105	150	127	127	13.5	37.0	45.0	M8 x 1
48 x 10R	105	150	127	127	13.5	37.0	45.0	M8 x 1

Screws

Precision Screw PSR

d ₀ x P	(mm)					Weight
			Length		Js	
	d ₁	d ₂	Standard	On request	(kgcm²/m)	(kg/m)
20 x 5R	20.3	19.5	1 500	2 500	1.22	2.45
30 x 5R	30.3	29.5			6.21	5.54
30 x 10R	30.5	29.1	3 000	5 000	6.15	5.51
48 x 5R	48.3	47.5			40.88	14.21
48 x 10R	48.5	47.1			40.62	14.16

Precision screws PSR, with mechanically connected screw ends


These screws consist of

- a precision screw part and
- _ an unmachined spigot (as the screw journal).

The spigot is mechanically connected on one side and is available in different sizes.

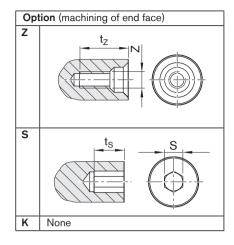
We have a solution to prevent problems arising from big end bearing diameters (e.g. visible thread grooves or axial contact faces which are too small for the fixed bearing). Please ask.

Separate delivery of a screw without end machining and without nut is not planned.

d ₀ x P	Tolerance grade	(mm)			
(mm)		D _R	L _R	L _{tot}	Ls
		-1	+2		
20 x 5R		36.4	200	1700	1500
30 x 5R	-	46.1	250	2050	1800
30 x 10R	T5	46.1	250	2050	1800
48 x 5R	-	80.4	400	2300	1900
48 x 10R	-	80.4	400	2300	1900

 $d_0 \times P =$ size


nominal diameter d_0 =


moment of inertia =

J_s P lead (R = right-hand) =

Screw Ends

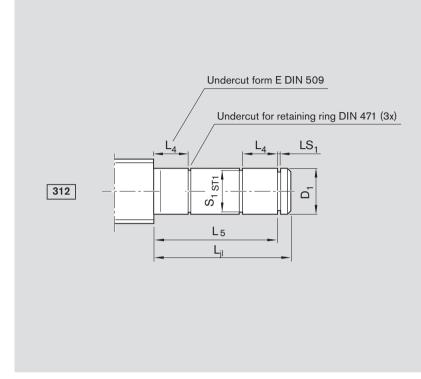
Form 002

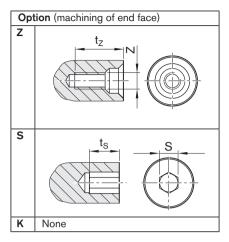
Ordering code PLSA:

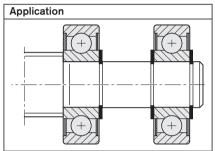
FEM-E-S 20 x 5R 1 0 T7 R 002K200 822K120 1250 1 0

Form	Version	(mm)										
		d _o x P	Z	tz	S	ts						
002	200	20 x 5	M6	16	8	8						
	300	30 x 5/10	M10	22	12	12						
	480	48 x 5/10	M16	36	17	17						

 $d_0 x P = size$


- d_0 = nominal diameter
- P' = lead (R = right-hand)


S = hex socket


Z = centering hole DIN 332-D

Screw Ends

Form 312

ts

4

4

5

8

12

FEM-E-S 20 x 5R 1 0 T7 R 31	2Z120 822Z120 1250 1 0
-----------------------------	------------------------

Form Version¹⁾ (mm) D₁ S₁ ST1 LS₁ Z S L_{jl} L_4 L_5 tz d₀ x P j6 H13 312 120 20 x 5R 12 43 10 40 10.0 4 11.5 h11 1.10 M4 150 20 x 5R 4 15 47 11 44 14.3 h11 1.10 M5 12.5 200 30 x 5R/10R 5 60 20 14 56 19.0 h11 1.30 M6 16.0 250 30 x 5R/10R 25 64 15 1.30 M10 22.0 8 60 23.9 h12 48 x 5R/10R 350 35 73 17 68 33.0 h12 1.60 M12 28.0 12

 The allocation of screw ends to the bearing units is defined by the version. Note: Form 312 with two floating bearings increases the critical speed, see page 54.

 $d_0 x P = size$

d₀ = nominal diameter

Nr. = part number

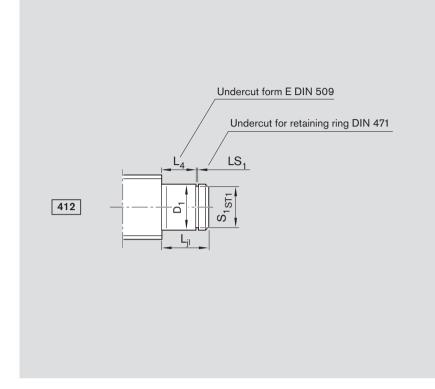
Ordering code PLSA:

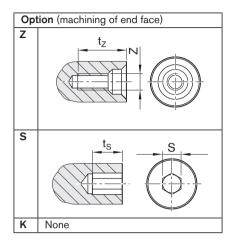
P = lead (R = right-hand)

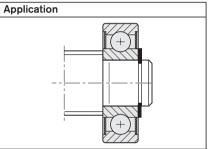
- S = hex socket
- Z = centering hole DIN 332-D

End bearings for screw ends form 312

The bearing unit LAD consists of:


- 1 bearing (2x required)
- 2 retaining rings




Form	Version	d _o x P	LAD
			Nr.
312	120	20 x 5R	R1590 612 00
	150	20 x 5R	R1590 615 00
	200	30 x 5R/10R	R1590 620 00
	250	30 x 5R/10R	R1590 625 00
	350	48 x 5R/10R	R1590 635 00

Screw Ends

Form 412

Ordering	code PLSA:		FEM-E-S 2	0 x 5R	1 0 T7	7 R 41	2Z120 8	322Z120	1250	1 0		
Form	Version ¹⁾	(mm)										
		d _o x P	D ₁ j6	L _{jl}	L_4	S ₁	ST1	LS ₁ H13		tz	S	ts
412	120	20 x 5R	12	13	10	11.5	h11	1.10	M4	10	4	4
	150	20 x 5R	15	14	11	14.3	h11	1.10	M5	12.5	4	4
	200	30 x 5R/10R	20	18	14	19.0	h11	1.30	M6	16	5	5
	250	30 x 5R/10R	25	19	15	23.9	h12	1.30	M10	22	8	8
	350	48 x 5R/10R	35	22	17	33.0	h12	1.60	M12	28	12	12

1) The allocation of screw ends to the bearing units is defined by the version.

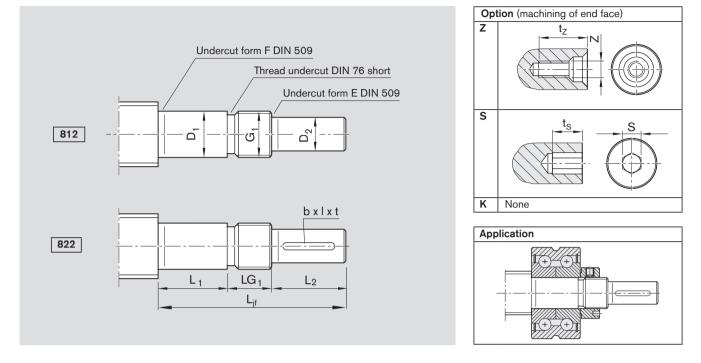
 $d_0 \, x \, \mathsf{P} = \ \text{size}$

- $d_0 \quad = \ nominal \ diameter$
- Nr. = part number
- P = lead (R = right-hand)
- S = hex socket
- Z = centering hole DIN 332-D

End bearings for screw ends form 412

The bearing unit LAD consists of:

- 1 bearing


- 2 retaining rings

Form	Version	d _o x P	LAD
			Nr.
412	120	20 x 5R	R1590 612 00
	150	20 x 5R	R1590 615 00
	200	30 x 5R/10R	R1590 620 00
	250	30 x 5R/10R	R1590 625 00
	350	48 x 5R/10R	R1590 635 00

Screw Ends

Form 812 and 822

Ordering code PLSA:

FEM-E-S 20 x 5R 1 0 T7 R 822Z120 412Z120 1250 1 0

Form	Version ¹⁾		(mm)														Mp
										Keyw DIN 6	/ay pe 6885	er	Z		S		(Nm)
		d _o x P	L _{jf}	D ₁ h6	L ₁	D 2 h7	L ₂	G ₁	LG ₁	b P9	I	t	z	tz	S	t _S	
812	150	20 x 5R	70	15	23	12	25	M15x1	22	-	-	-	M4	10	4	4	12.1
	153	20 x 5R	97	15	50	12	25	M15x1	22	-	-	-	M4	10	4	4	12.1
	205	30 x 5R	116	20	54	18	40	M20x1	22	-	-	-	M6	16	5	5	22.8
		30 x 10R	116	20	54	18	40	M20x1	22	-	_	-	M6	16	5	5	38.8
	206	30 x 5R	120	20	58	18	40	M20x1	22	-	-	-	M6	16	5	5	22.8
		30 x 10R	120	20	58	18	40	M20x1	22	-	_	-	M6	16	5	5	38.8
	351	48 x 5R	140	35	66	30	50	M35x1,5	24	-	-	-	M10	22	10	10	59.9
		48 x 10R	140	35	66	30	50	M35x1,5	24	-	-	-	M10	22	10	10	117.1
	352	48 x 5R	156	35	82	30	50	M35x1,5	24	-	-	-	M10	22	10	10	59.9
		48 x 10R	156	35	82	30	50	M35x1,5	24	-	-	-	M10	22	10	10	117.1
822	150	20 x 5R	70	15	23	12	25	M15x1	22	4	20	2.5	M4	10	4	4	12.1
	153	20 x 5R	97	15	50	12	25	M15x1	22	4	20	2.5	M4	10	4	4	12.1
	205	30 x 5R	116	20	54	18	40	M20x1	22	6	28	3.5	M6	16	5	5	22.8
		30 x 10R	116	20	54	18	40	M20x1	22	6	28	3.5	M6	16	5	5	38.8
	206	30 x 5R	120	20	58	18	40	M20x1	22	6	28	3.5	M6	16	5	5	22.8
		30 x 10R	120	20	58	18	40	M20x1	22	6	28	3.5	M6	16	5	5	38.8
	351	48 x 5R	140	35	66	30	50	M35x1,5	24	8	36	4.0	M10	22	10	10	59.9
		48 x 10R	140	35	66	30	50	M35x1,5	24	8	36	4.0	M10	22	10	10	117.1
	352	48 x 5R	156	35	82	30	50	M35x1,5	24	8	36	4.0	M10	22	10	10	59.9
		48 x 10R	156	35	82	30	50	M35x1,5	24	8	36	4.0	M10	22	10	10	117.1

1) The allocation of screw ends to the bearing units is defined by the version.

End bearings for screw ends form 812 and 822

The bearing unit LAF, LAN, LAS consists of:

- 1 bearing
- 1 slotted nut

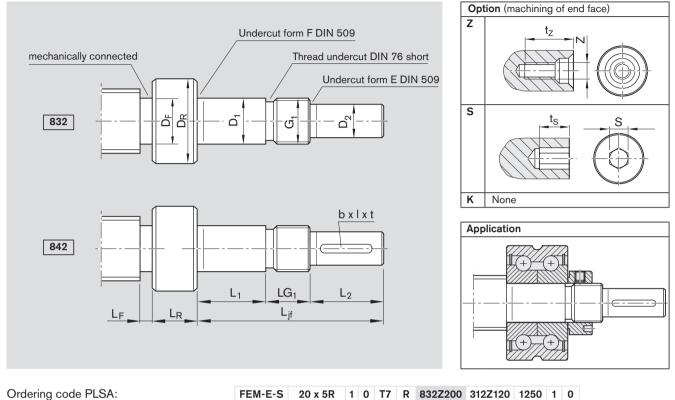
Form	Version		Nr.		
		d _o x P	LAF	LAN	LAS
812	150	20 x 5R	R159A 015 01	R159A 115 01	-
	153	20 x 5R	-	-	R159A 415 01
	205	30 x 5R	R159A 320 01	R159A 220 01	-
		30 x 10R	R159A 320 01	R159A 220 01	-
	206	30 x 5R	-	-	R159A 420 02
		30 x 10R	-	-	R159A 420 02
	351	48 x 5R	R159A 335 01	R159A 235 01	-
		48 x 10R	R159A 335 01	R159A 235 01	-
	352	48 x 5R	-	-	R159A 435 01
		48 x 10R	-	-	R159A 435 01
822	150	20 x 5R	R159A 015 01	R159A 115 01	-
	153	20 x 5R	-	-	R159A 415 01
	205	30 x 5R	R159A 320 01	R159A 220 01	-
		30 x 10R	R159A 320 01	R159A 220 01	-
	206	30 x 5R	-	-	R159A 420 02
		30 x 10R	-	-	R159A 420 02
	351	48 x 5R	R159A 335 01	R159A 235 01	-
		48 x 10R	R159A 335 01	R159A 235 01	-
	352	48 x 5R	-	-	R159A 435 01
		48 x 10R	-	-	R159A 435 01

 $d_0 x P = size$

 $d_0 = nominal diameter$ $M_p = maximum permissi$

M_p = maximum permissible drive torque (precondition: no radial load at drive journal)

Nr. = part number


P = lead (R = right-hand)

S = hex socket

Z = centering hole DIN 332-D

Screw Ends

Form 832 and 842

Form	Version ¹⁾	(mm)															Mp (Nm)
										Keyw DIN 6	•••	r	Z		S		(I VIII)
		d _o x P	L _{jf}	D ₁	L ₁	D ₂	L ₂	G ₁	LG ₁	b	I	t	Z	tz	S	ts	
				h6		h7				P9							
832	201	20 x 5R	116	20	54	18	40	M20x1	22	-	-	-	M6	16	5	5	23.0
	251	20 x 5R	157	25	87	20	45	M25x1.5	25	-	-	-	M6	16	5	5	28.3
	301	30 x 5R	148	30	74	25	50	M30x1.5	24	-	-	-	M10	22	8	8	46.2
	302	30 x 10R	148	30	74	25	50	M30x1.5	24	_	-	-	M10	22	8	8	85.8
	350	30 x 5R	189	35	108	30	55	M35x1.5	26	-	-	-	M10	22	8	8	57.1
	351	30 x 10R	189	35	108	30	55	M35x1.5	26	_	-	-	M10	22	8	8	106.8
	503	48 x 5R	205	50	106	40	70	M50x1.5	29	-	-	-	M16	36	12	12	112.2
	504	48 x 10R	205	50	106	40	70	M50x1.5	29	-	-	-	M16	36	12	12	221.1
	650	48 x 5R	310	65	178	60	100	M65x2	32	-	-	-	M20	42	17	17	143.3
	651	48 x 10R	310	65	178	60	100	M65x2	32	-	-	-	M20	42	17	17	276.8
842	201	20 x 5R	116	20	54	18	40	M20x1	22	6	36	3.5	M6	16	5	5	23.0
	251	20 x 5R	157	25	87	20	45	M25x1.5	25	6	40	3.5	M6	16	5	5	28.3
	301	30 x 5R	148	30	74	25	50	M30x1.5	24	8	40	4.0	M10	22	8	8	46.2
	302	30 x 10R	148	30	74	25	50	M30x1.5	24	8	40	4.0	M10	22	8	8	85.8
	350	30 x 5R	189	35	108	30	55	M35x1.5	26	8	45	4.0	M10	22	8	8	57.1
	351	30 x 10R	189	35	108	30	55	M35x1.5	26	8	45	4.0	M10	22	8	8	106.8
	503	48 x 5R	205	50	106	40	70	M50x1.5	29	12	50	5.0	M16	36	12	12	112.2
	504	48 x 10R	205	50	106	40	70	M50x1.5	29	12	50	5.0	M16	36	12	12	221.1
	650	48 x 5R	310	65	178	60	100	M65x2	32	18	90	7.0	M20	42	17	17	143.3
	651	48 x 10R	310	65	178	60	100	M65x2	32	18	90	7.0	M20	42	17	17	276.8

1) The allocation of screw ends to the bearing units is defined by the version.

End bearings for screw ends form 832 and 842

The bearing unit LAS, FEC-F consists of:

- 1 bearing

- 1 slotted nut

Form	Version	(mm)					Nr.	
		d ₀ x P	D _R	L _R	D _F	L _{F max}	LAS	FEC-F
832	201	20 x 5R	27	7	19		R159A 420 01	-
	251	20 x 5R	34	7	19	26	-	R159B 425 01
	301	30 x 5R	40	10	29	17	R159A 430 01	-
	302	30 x 10R	40	10	28.5	17	R159A 430 01	-
	350	30 x 5R	45	10	29	28	-	R159B 435 01
	351	30 x 10R	45	10	28.5	28	-	R159B 435 01
	503	48 x 5R	62	12	47	22	R159A 450 01	-
	504	48 x 10R	62	12	46.5	22	R159A 450 01	-
	650	48 x 5R	78	18	47	46	-	R159B 465 01
	651	48 x 10R	78	18	46.5	46	-	R159B 465 01
842	201	20 x 5R	27	7	19	14	R159A 420 01	-
	251	20 x 5R	34	7	19	26	-	R159B 425 01
	301	30 x 5R	40	10	29	17	R159A 430 01	-
	302	30 x 10R	40	10	28.5	17	R159A 430 01	-
	350	30 x 5R	45	10	29	28	-	R159B 435 01
	351	30 x 10R	45	10	28.5	28	-	R159B 435 01
	503	48 x 5R	62	12	47	22	R159A 450 01	-
	504	48 x 10R	62	12	46.5	22	R159A 450 01	-
	650	48 x 5R	78	18	47	46	-	R159B 465 01
	651	48 x 10R	78	18	46.5	46	-	R159B 465 01

 $d_0 \, x \, \mathsf{P} = \ \text{size}$

 $d_0 = nominal diameter$

 M_p = maximum permissible drive torque (precondition: no radial load at drive journal)

Nr. = part number

P = lead (R = right-hand)

S = hex socket

Z = centering hole DIN 332-D

Bearing unit LAF

Fixed bearing with angularcontact thrust ball bearing LGF Double-thrust, screw-down, Series LGF-B-... Double-thrust, screw-down, Series LGF-C-...

The bearing unit consists of:

- angular-contact thrust ball bearing LGF (not available as a separate part)
- slotted nut NMA...

d _o x P	LAF	LGF	NMA	NMA	
	Nr.	Designation	Designation	Nr.	(kg)
20 x 5R	R159A 015 01	LGF-B-1560	NMA 15x1	R3446 020 04	0.49
30 x 5R/10R	R159A 320 01	LGF-C-2068	NMA 20x1	R3446 015 04	1.35
48 x 5R/10R	R159A 335 01	LGF-C-3590	NMA 35x1.5	R3446 012 04	2.49

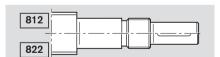
Ρ

d ₀ x P	C (N)	C ₀ (N)	M _{RL} (Nm)	R_{fb} (N/μm)	R _{kl} (Nm/mrad)	n _G (min⁻¹)
20 x 5R	17900	28000	0,20	400	65	3500
30 x 5R/10R	42000	94000	0,45	1150	320	3000
48 x 5R/10R	66000	177000	0,90	1600	900	2000

C = dynamic load rating

 C_0 = static load rating

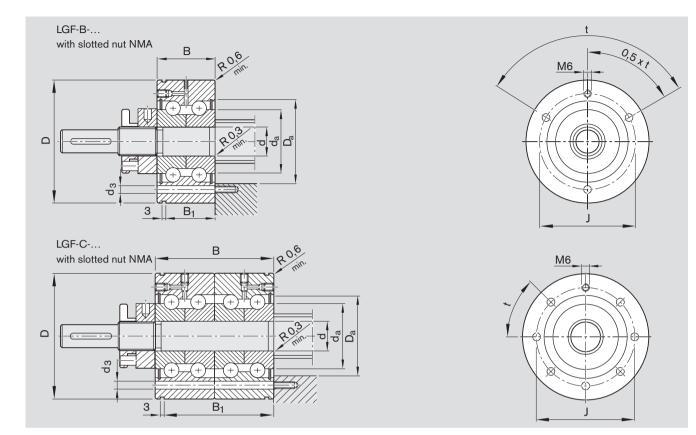
 $d_0 x P = size$


d₀ = nominal diameter

 $\dot{M_{RL}}$ = Bearing friction torque with seal

 n_{G} = Limit speed (grease)

Nr. = part number


Suitable for screw ends: Form

= lead (R = right-hand)

 $R_{fb} = Rigidity (axial)$

R_{kl} = Rigidity against tilting

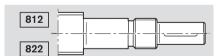
d ₀ x P	(mm)	n)									Mounting holes		
	d	D	В	B ₁	J		D_{a}	d _a		Number	d ₃	t	
						min.	max.	min.	max.		(mm)	(°)	
20 x 5R	15 _0.010	60 _{-0.013}	25 _{-0.25}	17	46	32	35	20	31	3	6.8	120	
30 x 5R/10R	20 _0.005	68 _{-0.010}	56 _{-0.50}	47	53	40	43	25	39	7	6.8	45	
48 x 5R/10R	35 _0.005	90 _{-0.010}	68 _{-0.50}	59	75	59	62	45	58	7	8.8	45	

Bearing unit LAN

Fixed bearing with angularcontact thrust ball bearing LGN Double-thrust, Series LGN-B-... Double-thrust, in pairs, Series LGN-C-...

The bearing unit consists of:

- angular-contact thrust ball bearing — LGN (not available as a separate part)
- slotted nut NMA...



d ₀ x P	LAN	LGN	NMA	NMA	
	Nr.	Designation	Designation	Nr.	
					(kg)
20 x 5R	R159A 115 01	LGN-B-1545	NMA 15x1	R3446 020 04	0.27
30 x 5R/10R	R159A 220 01	LGN-C-2052	NMA 20x1	R3446 015 04	0.75
48 x 5R/10R	R159A 235 01	LGN-C-3572	NMA 35x1.5	R3446 012 04	1.25

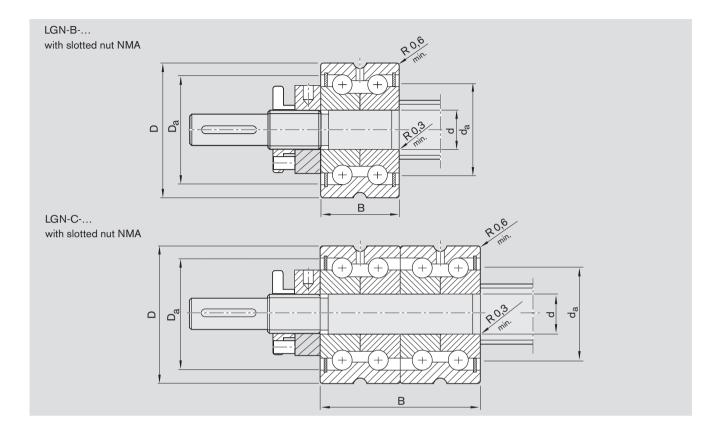
Ρ

	С	C ₀	M _{RL}	R _{fb}	R _{kl}	n _G
d ₀ x P	(N)	(N)	(Nm)	(N/μm)	(Nm/mrad)	(min ⁻¹)
20 x 5R	17900	28000	0.20	400	65	3500
30 x 5R/10R	42000	94000	0.45	1150	320	3000
48 x 5R/10R	66000	177000	0.90	1600	900	2000

Suitable for screw ends: Form

С dynamic load rating =

C₀ static load rating =


- $d_0\,x\,P =$ size
- d_0 nominal diameter =
- M_{RL} Bearing friction torque with seal =
- Limit speed (grease) n_G =
- part number Nr. =

lead (R = right-hand) =

Rigidity (axial) R_{fb}

$$R_{kl}$$
 = Rigidity against tilting
P = lead (R = right-hand)

lead (R = right-hand) =

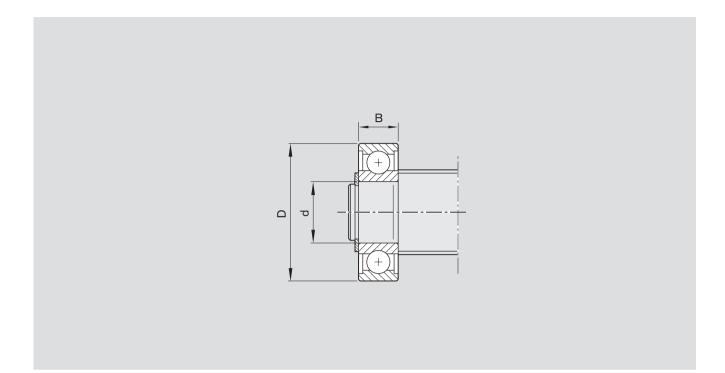
d _o x P	(mm)							
	d	D	В		Da	d _a		
				min.	max.	min.	max.	
20 x 5R	15 _{-0.010}	45 _{-0.01}	25 _{-0.25}	32	35	20	31	
30 x 5R/10R	20 _0.005	52 _{-0.01}	56 _{-0.50}	40	43	25	39	
48 x 5R/10R	35 _0.005	72 _{-0.01}	68 _{-0.50}	59	62	45	58	

Bearing unit LAD

Floating bearing with deep-groove ball bearing

The bearing unit consists of:

- deep-groove ball bearing per DIN 625... .2RS
- retaining ring DIN 471 (2 pcs)



d ₀ x P	LAD	Single parts				С	C ₀	Weight
		Deep-groove ball bearing DIN 625		Retaining ring	J DIN 471			complete
	Nr.	Designation	Nr.	Designation	Nr.	(N)	(N)	(kg)
20 x 5R	R1590 612 00	6201.2RS	R3414 042 00	12x1	R3410 712 00	6950	2650	0.035
	R1590 615 00	6202.2RS	R3414 074 00	15x1	R3410 748 00	7800	3250	0.043
30 x 5R/10R	R1590 620 00	6204.2RS	R3414 038 00	20x1.2	R3410 735 00	12700	5700	0.106
	R1590 625 00	6205.2RS	R3414 063 00	25x1.2	R3410 750 00	14300	6950	0.125
48 x 5R/10R	R1590 635 00	6207.2RS	R3414 075 00	35x1.5	R3410 725 00	25500	13200	0.288

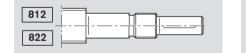
Suitable for screw ends: Form

- C = dynamic load rating
- C_0 = static load rating
- $d_0 x P = size$
- d₀ = nominal diameter
- Nr. = part number
- P = lead (R = right-hand)

d ₀ x P	(mm)						
	d	D	В				
20 x 5R	12	32	10				
	15	35	11				
30 x 5R/10R	20	47	14				
	25	52	15				
48 x 5R/10R	35	72	17				

Bearing unit LAS

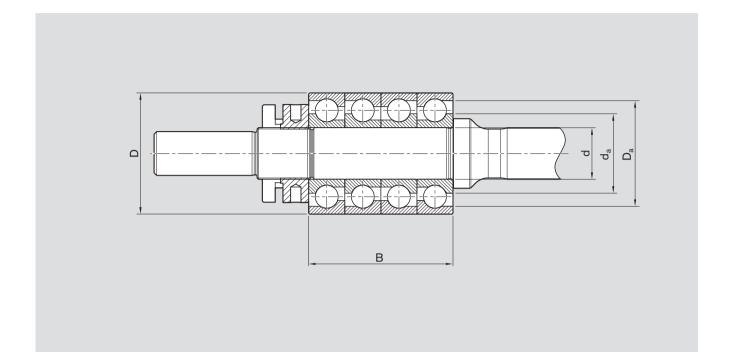
Fixed bearing with angularcontact thrust ball bearing LGS Double-thrust Series LAS-E


The bearing unit consists of:

- angular-contact thrust ball bearing LGS per DIN 628 (not available as a separate part)
- slotted nut NMA...

d ₀ x P	LAS	LGS	NMA		c	C ₀
	Nr	Designation	Designation	Nr.		
					(kN)	(kN)
20 x 5R	R159A 415 01	LGS-E-1542	NMA 15x1	R3446 020 04	37.1	51.5
	R159A 420 01	LGS-E-2047	NMA 20x1	R3446 015 04	39.9	63.8
30 x 5R/10R	R159A 420 02	LGS-E-2052	NMA 20x1	R3446 015 04	54.2	80.0
	R159A 430 01	LGS-E-3072	NMA 30x1.5	R3446 016 04	98.3	163.1
48 x 5R/10R	R159A 435 01	LGS-E-3580	NMA 35x1.5	R3446 012 04	111.2	188.5
	R159A 450 01	LGS-E-50110	NMA 50x1.5	R3446 019 04	211.2	392.3

Suitable for screw ends: Form


832	
842	

C = dynamic load rating

- C_0 = static load rating
- $d_0 x P = size$
- d_0 = nominal diameter

Nr. = part number

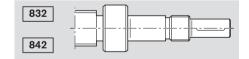
P = lead (R = right-hand)

d ₀ x P	(mm)							Weight
	d	D	В		D _a		d _a	complete
				min.	max.	min.	max.	(kg)
20 x 5R	15 _0.008	42 _0.011	52	32.6	37.8	20.6	31.6	0.39
	20 _0.010	47 _{-0.011}	56	39.0	42.8	25.6	38.0	0.57
30 x 5R/10R	20 _0.010	52 _{-0.013}	60	40.4	47.8	27.0	39.4	0.73
	30 _0.010	72 _{-0.013}	76	56.5	67.8	37.0	55.5	1.68
48 x 5R/10R	35 _{-0.012}	80 _{-0.013}	84	63.3	74.4	44.0	62.3	2.19
	50 _{-0.012}	110 _{-0.015}	108	88.8	104.0	61.0	87.8	4.95

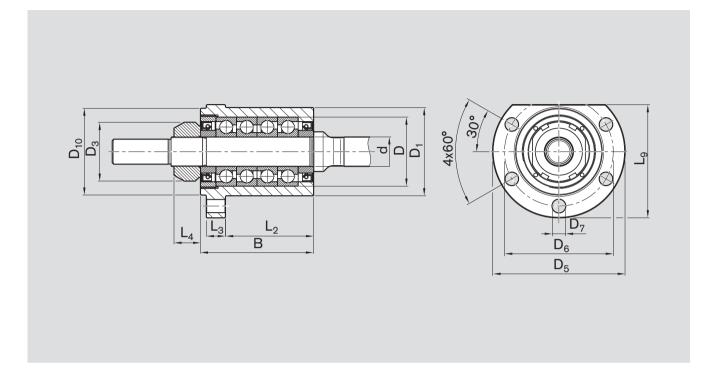
Bearing unit FEC-F

Fixed bearing with angularcontact thrust ball bearing LGS

The bearing unit consists of:


- Precision steel flanged housing
- _ angular-contact thrust ball bearing LGS
- slotted nut NMB _

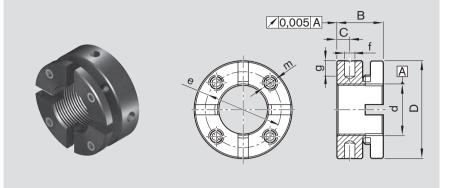
The slotted nut is delivered unmounted



d _o x P	FEC-F	LGS	NMB		Weight complete	C	C ₀
	Nr.	Designation	Designation M _A				
				(Nm)	(kg)	(N)	(N)
20 x 5R	R159B 425 01	LGS-E-2562	NMB 25x1.5	25	3.5	74.2	119.2
30 x 5R/10R	R159B 435 01	LGS-E-3580	NMB 35x1.5	42	6.0	109.4	188.4
48 x 5R/10R	R159B 465 01	LGS-E-65140	NMB 65x2	100	27.0	305.3	615.4

Suitable for screw ends: Form

- С dynamic load rating =
- static load rating =
- $C_0 = d_0 \times P =$ size
- d_0 nominal diameter =
- Nr. part number =
- Ρ lead (R = right-hand) =

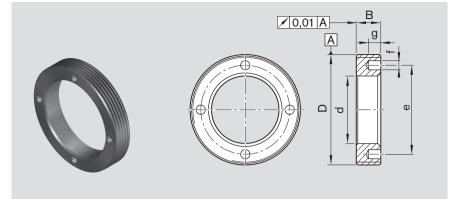

d _o x P	(mm)												
	d	D	В	L2	L3	L4	L9	D1	D3	D5	D6	D7	D10
								h7					
20 x 5R	25_0.010	62 _{-0.013}	89	68.0	16	20	104.0	80	44	120	100	11.0	80
30 x 5R/10R	35_0.012	80_0.013	110	82.0	20	22	124.0	100	54	140	120	13.0	99
48 x 5R/10R	65 _{-0.015}	140_0.018	180	133.5	30	28	199.5	170	95	225	198	17.5	170

Slotted Nuts and Housing Nuts

Slotted Nuts NMA for Fixed Bearings

Slotted nut NMA

- for maximum vibratory loads


Designation	Nr.	(mm)	(mm)								F_{aB}	M _{AG}	Weight
		d	D	В	с	m	е	f	g	(Nm)	(kN)	(Nm)	(g)
NMA 15x1	R3446 020 04	M15x1	30	18	5	M5	24	4	5	10	100	3	60
NMA 17x1	R3446 014 04	M17x1	32	18	5	M5	26	4	5	15	120	3	70
NMA 20x1	R3446 015 04	M20x1	38	18	5	M6	31	4	6	18	145	5	130
NMA 25x1.5	R3446 011 04	M25x1.5	45	20	6	M6	38	5	6	25	205	5	160
NMA 30x1.5	R3446 016 04	M30x1.5	52	20	6	M6	45	5	7	32	250	5	200
NMA 35x1.5	R3446 012 04	M35x1.5	58	20	6	M6	51	5	7	40	280	5	230
NMA 40x1.5	R3446 018 04	M40x1.5	65	22	6	M6	58	6	8	55	350	5	300
NMA 50x1.5	R3446 019 04	M50x1.5	75	25	8	M6	68	6	8	85	450	5	430

Housing nut GWR

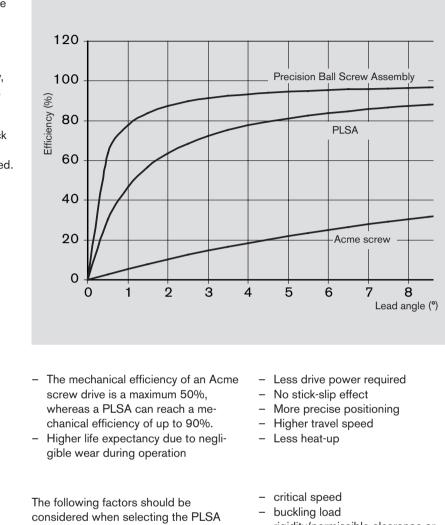
- for angular-contact thrust ball bearing LGN
- for cylindrical single nut ZEM-E-S

Note:

Use a threadlocker (e.g. Loctite 638) to secure against loosening.

Designation	Nr.	(mm)						Weight
		D	d	В	е	f	g	(g)
GWR 18x1	R1507 040 33	M18x1	8.5	8	12.5	2.5	3	10.0
GWR 23x1	R1507 240 35	M23x1	13.0	8	18.0	2.5	3	15.0
GWR 26x1.5	R1507 240 22	M26x1.5	16.5	8	20.5	2.5	3	16.5
GWR 30x1.5	R1507 340 34	M30x1.5	17.0	8	23.0	3.0	4	29.0
GWR 36x1.5	R1507 040 23	M36x1.5	22.0	8	29.0	3.0	4	35.0
GWR 40x1.5	R1507 140 03	M40x1.5	25.0	8	33.0	3.0	4	39.5
GWR 45x1.5	R1507 240 04	M45x1.5	28.0	8	38.0	3.0	4	55.0
GWR 50x1.5	R1507 240 25	M50x1.5	31.0	10	40.0	4.0	5	86.0
GWR 55x1.5	R1507 340 05	M55x1.5	36.0	10	46.0	4.0	5	96.0
GWR 58x1.5	R1507 440 32	M58x1.5	43.0	10	50.0	4.0	5	84.0
GWR 60x1	R1507 440 28	M60x1	43.0	10	51.0	4.0	5	97.0
GWR 62x1.5	R1507 440 29	M62x1.5	43.0	12	53.0	5.0	6	127.0
GWR 65x1.5	R1507 440 26	M65x1.5	47.0	12	55.0	4.0	5	136.0
GWR 70x1.5	R1507 440 06	M70x1.5	42.0	12	58.0	4.0	5	216.0
GWR 78x2	R1507 540 07	M78x2	52.0	15	67.0	6.0	7	286.0
GWR 92x2	R1507 640 09	M92x2	65.0	16	82.0	6.0	7	385.0
GWR 112x2	R1507 740 11	M112x2	82.0	18	100.0	8.0	8	596.0

Technical Data


Technical Notes

The degree of efficiency determines the torque required to convert the rotary motion into linear motion.

Due to their high mechanical efficiency, PLSAs are in principle not self-locking.

▲ Safety information

For installation, customers should check whether separate protection against falling loads, e.g. a safety nut, is required. Please consult us.

Advantages over the Acme screw drive

Selection criteria for PLSAs (extract)

- for a given application:
- degree of accuracy required (lead deviation)
- in-service load conditions
- service life

- rigidity/permissible clearance or desired preload
- characteristic speed (max. permissible linear speed)

▲ Note

Radial and eccentric forces relative to the screw must be avoided, as they can affect the PLSA's performance and shorten its life. Where special conditions of use are involved, please ask.

The following points should be taken into consideration when selecting a PLSA that is to be both cost-efficient and optimally designed:

- The calculation of the service life should be based on average loads and average speeds, not on maximum values.
- In order for us to provide you with a customized solution, installation drawings or sketches of the nut environment should be enclosed with.

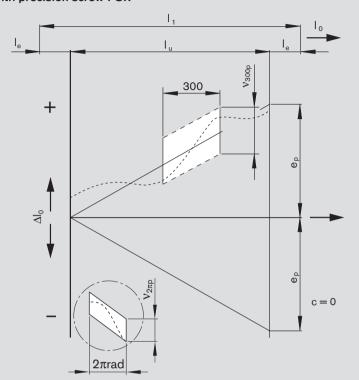
Static load rating C ₀	The static load rating is an axial, concentrically acting force that induces a permanent deformation of 0.0001 x the rolling element diameter.			
Dynamic load rating C	The dynamic load rating is an axial, concentrically acting force of constant magnitude and direction under which 90% of a sufficiently large number of identical PLSAs can achieve a nominal service life of one million revolutions.			
Correction factor for tolerance grades	The static load rating C_0 and the dynamic load rating C must be multiplied by the correction factor f_{ac} as appropriate for the specific tolerance grade of the screw.			
	Tolerance grade T 5 7 9 f _{ac} 1 0,9 0,8			
Service life	The nominal life is expressed by the number of revolutions (or number of operating hours at constant speed) that will be attained or exceeded by 90% of a representative sample of identical PLSA's before the first signs of material fatigue become evident. The nominal life is designated as L or L_h , depending on whether it is specified in revolutions or hours. The nominal life calculation is based on optimal installation and environmental conditions. The service life may be shortened, for example, if the lubrication is affected by exposure to process media.			
Critical speed and buckling load	The critical speed and buckling load can be checked using the corresponding charts. For precise calculations see formula 12 15, in "Design Calculations".			
Characteristic speed d₀ · n	Rexroth PLSAs can be operated at very high speeds due to their structural design. Characteristic speeds of up to 150,000 are possible depending on the nut type. $d_0 \cdot n \leq 150\ 000$ $d_0 = nominal diameter (mm)$ $n = speed (min^{-1})$ The theoretically possible maximum linear speed v_{max} (m/min) is specified on the page featuring the relevant nut. Actually attainable speeds are heavily dependent among other factors on preload and duty cycle. They are gen-erally restricted by the critical speed. (See "Design Calculations").			
Material, hardness	PLSAs are made of high-quality, heat-treatable steel, carbon chrome alloy steels or case-hardened steels. The screw and nut raceways have a minimum Rockwell hardness of HRC 58. The screw ends are not hardened.			

Technical Data

Technical Notes

Sealing	PLSAs are precision assemblies that require protection against contamination. Flat protective covers, bellows type dust boots or other enclosures are particularly suitable for this purpose. As there are many applications in which these methods do not provide sufficient protection, we have developed a gapless lip-type seal which ensures an optimal sealing effect and maintains high efficiency due to the low friction level. Our PLSAs are therefore supplied with seals in their standard versions. At the customer's request, these seals can be omitted. To ensure that seals retain their functionality, dirt must be removed at regular intervals.
Short stroke Short stroke applications = stroke ≤ nut length	 Lubrication: During a short stroke, the planets do not make a real turn. It is therefore impossible for an adequate lubricating film to form. This may result in premature wear. To avoid this, it is sufficient to perform longer strokes at regular intervals with simultaneous relubrication as "lubricating strokes". Load rating: Short stroke applications will increase the number of times a rolling load passes over each point within the load zone. This reduces the load rating. Please consult us.
Permissible operating temperature	PLSAs are suitable for continuous operation at temperatures up to 80 °C with temporary peaks of 100 °C (measurements taken on the outer shell of the nut). Permissible operating temperatures: -10 °C $\leq T_{operating} \leq 80$ °C Permissible bearing temperature: -15 °C $\leq T_{bearing} \leq 80$ °C

Acceptance Conditions and Tolerance Grades


Permissible travel deviation

in accordance with DIN ISO 3408-3

T PLSA with precision screw PSR

Symbol definitions (excerpt):

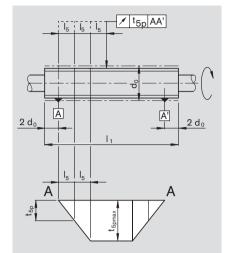
- I_0 = nominal travel
- I_1 = thread length
- ΔI_0 = travel deviation
- I_u = useful travel
- I_e = excess travel (the closer tolerances for travel and hardness do not apply here)
- c = travel compensation (target travel deviation) (standard: <math>c = 0)
- e_p = tolerance mean actual travel deviation
- v_{300p}= permissible travel deviation within 300 mm travel
- $\label{eq:v2pp} \begin{array}{l} \nu_{2\pi p} = & \text{permissible travel deviation within} \\ & \text{one revolution} \end{array}$

Useful	travel I _u	tolerance mean actual travel deviation e _p (μm) Tolerance grade			
>	\leq	5	7	9	
0	100	18	44	110	
100	200	20	48	120	
200	315	23	52	130	
315			$e_p = \frac{l_u}{300} \cdot v_{300p}$		

50

For precision screws PSR the follow- ing values apply in all cases:	ν _{300p} (μm) Tolerance gra	de		ν _{2πp} (μm) Tolerance gra	ıde	
	5	7	9	5	7	9
	23	52	130	8	10	10
Non-usable length l'_e (Excess travel)		d ₀ (mm) 20, 30	l _e (mm) 40			

48


Minimum number of measurements	Lead P	Minimum number of mea	surements for tolerance	grade
within 300 mm (measuring interval)	(mm)	5	7	9
and excess travel to be taken into	5	6	3	3
consideration.	10	3	1	1

Technical Data

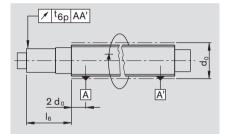
Acceptance Conditions and Tolerance Grades

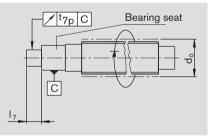
Run-outs and location deviations based on DIN ISO 3408-3

Radial run-out t_5 of the outer diameter of the screw over the length l_5 used to determine the straightness in relation to AA'.

d ₀		I ₅	t_{5pmax} in μ m for I_5 tolerance grade	
>	\leq		5	7; 9
6	12	80	32	40
12	25	160		
25	50	315		
50	100	630		
100	200	1250		

l ₁ /d ₀		$\begin{array}{l} t_{\text{5pmax}} \text{ in } \mu m \\ \text{for } l_1 \geq 4 l_5 \\ \text{tolerance grade} \end{array}$		
>	\leq	5	7; 9	
	40	64	80	
40	60	96	120	
60	80	160	200	
80	100	256	320	


Radial run-out t_6 of the bearing diameter in relation to AA' for $I_6 \leq I.$ Table value t_{6p} applies when $I_6 \leq$ reference length I.

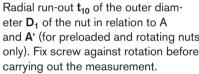

Where $I_6 > I$ then $t_{6a} \le t_{6p} \cdot \frac{I_6}{I}$

Coaxial deviation t_7 of the journal diameter of the screw shaft in relation to the bearing diameter for $l_7 > l$.

Table value t_{7p} applies when $I_7 \leq$ reference length I.

Where
$$I_7 > I$$
 then $t_{7a} \le t_{7p} \cdot \frac{I_7}{I}$

d ₀	d ₀ Refe ence leng		$\begin{array}{l} t_{6p} \text{ in } \mu m \\ \text{for } I_6 \leq I \\ \text{tolerance} \\ \text{grade} \end{array}$	
>	\leq		5	7; 9
6	20	80	20	40
20	50	125	25	50
50	125	200	32	63
125	200	315	40	80

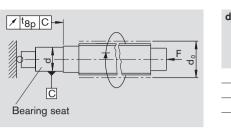

d ₀		Refer- ence length I	$\begin{array}{l} t_{7p} \text{ in } \mu m \\ \text{for } I_7 \leq I \\ \text{tolerance} \\ \text{grade} \end{array}$		
>	\leq		5	7; 9	
6	20	80	8	12	
20	50	125	10	16	
50	125	200	12	20	
125	200	315	16	25	

d₀ = nominal diameter

Axial run-out t8 of the shaft (bearing) face of the screw shaft in relation to the bearing diameter.

Axial run-out t_9 of the nut location face in relation to A and A' (for preloaded nuts only).

and A' (for preloaded and rotating nuts only). Fix screw against rotation before



ΙA

 $2 d_0$

Outer diameter D ₁		t _{10p} in μm for tolerance grade	
>	≤	5	7; 9
16	32	16	20
32	63	20	25
63	125	25	32
125	250	32	40
250	500	40	50

≠ ^t9p AA'

a _o		t _{8p} in μm for tolerance grade	
>	≤	5	7; 9
6	63	5	6
63	125	6	8
125	200	8	10

 t_{9p} in μm

grade

 \leq 32

63

125

250

500

for tolerance

5

16

20

25

32

40

7; 9

20

25

32

40

50

Flange diameter

>

16

32

63

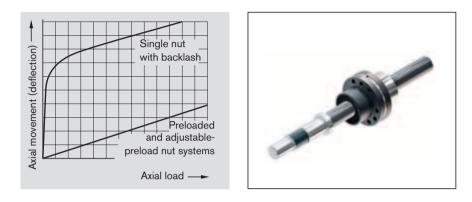
125

250

 D_5

Eo

A'


2 d₀

Technical Data

Preload, Rigidity, Friction Torques

Nut system preload

In addition to single nuts with reduced backlash, Rexroth supplies preloaded nut systems.

With preloaded nut systems, the deformation due to load cycling is significantly less than that of systems without preload. Preloaded nut systems should therefore be used in applications requiring a high degree of rigidity.

The screw is typically far less rigid than the nut unit (for details see "Overall axial rigidity...").

Rigidity

The rigidity of a PLSA is also influenced by all adjoining parts such as bearings, housing bores, nut housings etc.

Overall axial rigidity R_{bs} of the PLSA

The overall axial rigidity R_{bs} is comprised of the component rigidity of the bearing $R_{fb},$ the screw R_S and the nut unit $R_{nu}.$

$$\frac{1}{R_{bs}} = \frac{1}{R_{fb}} + \frac{1}{R_{S}} + \frac{1}{R_{nu}}$$
 16

Rigidity of the bearing R_{fb}

The rigidity of the bearings corresponds to the values found in the bearing manufacturer's catalog. See the corresponding tables in this catalog for rigidity values of the bearings offered by Rexroth.

 Rigidity of the screw Rs
 The rigidity of the screw Rs depends on the type of bearing used.

 See the corresponding tables for rigidity values.
 Note:

 Please note that in most cases the rigidity Rs of the screw will be significantly lower

than the rigidity **R**_{nu} of the nut unit.

(mm)

(mm)

(mm)

R_S/R_{S1}/R_{S2} =rigidity of the screw(N/µm)

 d_0 = nominal diameter

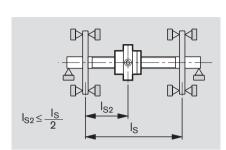
I_{S2} = distance between bearing and nut

ls

= distance between

bearing and bearing

1 PLSA shaft is fixed at one end.


 $\frac{(d_0)^2}{I_{S2}}$

 $R_{S2} = 165$ ·

 R_{S1}

2 PLSA shaft is fixed at both ends.

|--|

The lowest screw rigidity R_{s2min} occurs at the center of the screw ($I_{S2} = I_S/2$) and thus equals:

$$= 165 \cdot \frac{(d_0)^2}{l_{S1}} (N/\mu m) \qquad 17 \qquad F$$

s

s - Is2

– (N/μm)

18

$$R_{S2min}^{}= 660 \cdot \frac{(d_0)^2}{l_S} (N/\mu m)$$
 19

Rigidity in the area of the nut unit R_{nu}

See the corresponding tables for rigidity values.

Dynamic drag torque, preload and rigidity for screws

d ₀ x P	Backlash of single nut FEM / ZEM	Preload of flanged single FDM	nut, split		
	standard (mm)	R _{nu} (N/μm)		$R_{s}\left(\frac{N\cdot m}{\mu m}\right)$	T _{RD} approx. (Nm)
		max.	max.		
20 x 5	0,03	400	0.58	66	0.10
30 x 5		620	1.13	148	0.15
30 x 10	_	420	1.13	148	0.15
48 x 5	1	1080	2.47	380	0.50
48 x 10		760	2.47	380	0.50

The values given for dynamic drag torque are proven practical indicators for the nut preloading.

 $\mathbf{d}_0 \mathbf{x} \mathbf{P} = \text{Size}$

 R_s = Rigidity of the screw

- $\mathbf{R}_{nu} = \text{Rigidity of the nut unit}$
- $T_{RD} =$ Dynamic drag torque of the 2 seals
- $T_{pr0} =$ Dynamic drag torque without seals
- T_0 = Overall dynamic drag torque

 $T_0 = T_{pr0} + T_{RD}$

Mounting

Mounting

Condition as delivered

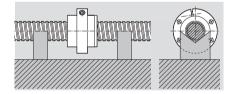
Rexroth PLSAs are normally delivered with an initial supply of grease. Relubrication is possible, and cartridges and cans of this grease are available. If another lubricant is used, you will need to check that it is compatible with the initial supply. For special cases, the PLSAs can also be supplied with only a preservative coating. This can be indicated by choosing the appropriate option number in the ordering code.

▲ Important

The selected lubricant must be in the nut before the machine is started.

Cleaning

Various cleaning agents can be used to degrease and wash the assembly:


- aqueous cleaning agents
- organic cleaning agents

A Important

Immediately after cleaning, thoroughly dry all parts, then apply a preservative coating or anti-corrosion oil. In all cases, take care to observe the appropriate legal regulations (environmental protection, health and safety at work, etc.) as well as the specifications for the cleaning agent (e.g. handling).

Storage

PLSAs are high-quality systems that must be treated with due care. In order to prevent damage and contamination, the elements should not be removed from the protective wrapping until immediately before installation. Once they have been removed from the packaging, they must be set down on V-shaped cradles.

Installation in the machine

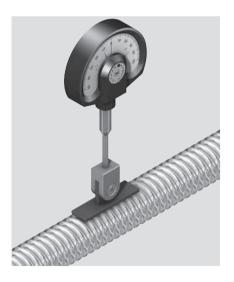
It is not normally necessary to remove the preservative coating before installation.

- If the PLSA is contaminated it must first be cleaned (see "Cleaning") and re-oiled
 Push the nut unit into the mounting bore, taking care to avoid any impact force or misalignment.
- Tighten the mounting screws using a torque wrench if necessary. Maximum tightening torque for the steel/steel material pairing ($R_m \ge 370 \text{ N/mm}^2$), see table.
- For the steel/aluminum and alumi-num/aluminum material pairings (R_m ≥ 280 N/mm²) the maximum tightening torques specified in the follow table apply.
 - When driving screws into aluminum, the length of thread engagement should be at least 1.5 times the screw diameter.

Tightening torques for fastening screws according to VDI 2230 for $\mu_{G} = \mu_{K} = 0.125$

Steel/alumi	num and al	uminum/		5
aluminum m	aterial pair	ings		5
Screw	Tighteni	ng torque	(Nm)	c
diameter	Strength	n class		(
(mm)	per DIN	ISO 898:		
	8.8	10.9	12.9	
М3	1.2	1.2	1.2	
M4	2.4	2.4	2.4	Ν
M5	4.8	4.8	4.8	N
M6	8.5	8.5	8.5	Ν
M8	20.0	20.0	20.0	Ν
M10	41.0	41.0	41.0	Ν
M12	70.0	70.0	70.0	Ν
M14	110.0	110.0	110.0	Ν
M16	175.0	175.0	175.0	Ν
M18	250.0	250.0	250.0	Ν
M20	345.0	345.0	345.0	Ν

Steel/steel m Screw diameter (mm)	aterial pairing Tightening torque (Nm) Strength class per DIN ISO 898: 8.8 10.9 12.9		
M3	1.3	1.8	2.1
M4	2.7	3.8	4.6
M5	5.5	8.0	9.5
M6	9.5	13.0	16.0
M8	23.0	32.0	39.0
M10	46.0	64.0	77.0
M12	80.0	110.0	135.0
M14	125.0	180.0	215.0
M16	195.0	275.0	330.0
M18	280.0	400.0	470.0
M20	390.0	560.0	650.0


Alignment of the PLSA in the machine

Self-aligning contact pads for easy alignment of the PLSA are available from Rexroth. (pads fitting for standard gauge).

Two pads of different lengths are available, which can be used depending on the screw lead:

- Part number R3305 131 19: length 33 mm

- Part number R3305 131 21: length 50 mm

End Bearings

Design Notes, Mounting Instructions

Bearing design

For customer-machined screw ends, please consider the design notes given for screw ends and housings.

For Rexroth screw end designs, see "End Machining Details."

Rexroth delivers complete drive systems, including the end bearings. Calculations are performed with the formulas used in the antifriction bearing industry.

Housing

Mounting

Angular-contact thrust ball bearings and deep-groove ball bearings

When mounting the angular-contact thrust ball bearings LGF and LGN, ensure that the mounting forces are exerted only on the bearing rings. Never apply mounting forces via the anti-friction bearing elements or the seal rings! The two sections of the inner raceway may not be separated during assembly or disassembly for any reason! Tighten the mounting screws for screw-down or flange-mounted bearings in crosswise sequence. The mounting screws may be subjected only to tension amounting to a maximum of 70% of their yielding point. The screw-down (LGF) bearings have a groove on the cylindrical surface of the outer raceway for disassembly. The individual bearings of the bearing pair series LGF-C... and LGN-C... are marked on the cylindrical surfaces of the outer raceways (see Figure). The markings reveal the bearing sequence. The sealing rings should face outward after proper mounting.

Outer raceway markings for paired bearings

Slotted nut NMA, NMZ

The bearings are preloaded by tightening the nuts.

In order to prevent settling phenomena, we recommend first tightening the slot-ted nut by twice the value of the tightening torque M_A and then easing the load. Only then should the slotted nut be retightened to the specified tightening

torque M_A . The two set screws are then alternately tightened using a hexagon socket wrench.

The components are disassembled in the reverse order, i.e. the set screws are to be removed before the slotted nut. The slotted nuts can be used several times when properly assembled and disassembled by competent personnel. The inner raceways of the bearings are dimensioned in such a way as to achieve a defined bearing preload sufficient for most applications when the slotted nut is tightened (M_A in accordance with Dimension Table). Lubrication

Lubrication

Grease lubrication

Planetary Screw Assemblies (PLSAs) are designed for lubrication with NLGI class 2 greases. The advantage of grease lubrication is that the PLSA can run long distances on one supply of grease.

 \triangle Do not use greases containing solid particles (e.g., graphite or MoS₂)!

If other lubricants are used, this may lead to a reduction in the relubrication intervals, the achievable travel in shortstroke applications, and the load ratings. Possible chemical interactions between the plastic materials, lubricants and preservative oils must also be taken into account.

 Δ If your application involves more demanding environmental requirements (such as clean room, vacuum, food industry environment, increased exposure to fluids or aggressive media, extreme temperatures), please consult us. These situations must be investigated on a case by case basis and may require the use of a special lubricant. Be sure to have all the information concerning your application at hand when contacting us.

For certain areas of use, e.g. food industry, clean room, vacuum applications, etc. or conditions such as extreme temperatures or exposure to processing media, the standard in-factory prelubrication and anticorrosive treatment may not be suitable or may not be compatible with the lubricant used for in-service lubrication. Please check suitability with us first!

Even under normal operating conditions, the system must be relubricated at the latest after 2 years due to aging of the grease. The seals on the PLSA nut must be coated with the relevant lubricant before installation to ensure that they are not dry during start-up, which would cause them to wear out faster.

Grease lubrication quantities for NLGI 2 greases

Standard lubrication practices for ball bearings also apply to Planetary Screw Assemblies. Lubricant loss is, however, greater than that from conventional ball bearings, for instance, due to the axial motion between the screw and the nut. The nut has to be lubricated with grease via the lube port before the PLSA is started. We recommend the following grease lubricants for standard applications: Dynalub 510, Elkalub GLS 135/N 2, or Castrol Longtime PD 2.

d _o x P	Lubricant quantities	Lubricant quantities (cm ³)		
	Initial lubrication	Relubrication		
	V.	, V _n		
20 x 5	10	5		
30 x 5	20	10		
30 x 10	20	10		
48 x 5	50	25		
48 x 10	50	25		

Dynalub high-performance lubricant for linear motion technology

(approved for the EU only)

The product specifications and safety data sheet and other technical data for Dynalub can be found at www.boschrexroth.de/brl

Product description, Dynalub 510

Application area

Under conventional environmental conditions this ground-fiber, homogeneous grease is ideally suited for the lubrication of linear elements.

Part number	Packing unit	
R3416 037 00	1 x 400 g	
R3416 035 00	25 kg	

Design Calculations

Design Calculations

Upon request, we can perform all calculations to your specifications.

Average speed and average load

 where the speed fluctuates, the average speed n_m is calculated as follows:

The following applies for the effective equivalent bearing load: Preload class factor X_{pr} : 0.03

- where the load fluctuates and the speed is constant, the average load F_m is calculated as follows:
- where both the load and the speed fluctuate, the average load F_m is calculated as follows:

See "Design Calculation Service Form", page 58

Where the speed and load fluctuate, the service life must be calculated using the averages ${\sf F}_m$ and ${\sf n}_m.$

$$\begin{split} n_m = & \frac{|n_1| \cdot q_{t1} + |n_2| \cdot q_{t2} + ... + |n_n| \cdot q_{tn}}{100\%} \\ & n_1, n_2, ... n_n = \text{speeds in phases 1 ... n} \\ n_m = \text{average speed} \\ q_{t1}, q_{t2}, ... q_{tn} = \text{discrete time step in phases 1 ... n} \end{split}$$

$$\begin{array}{rcl} F & > & 2,8 \cdot X_{pr} \cdot C & F_{eff \, n} \, = \, |F_n| \\ F & \leq & 2,8 \cdot X_{pr} \cdot C & F_{eff \, n} \, = \left[\frac{|F_n|}{2,8 \cdot X_{pr} \cdot C} + 1 \right]^{\frac{3}{2}} \cdot X_{pr} \cdot C \\ & C & = & dynamic \, load \, rating & (N) \\ & F_{eff \, n} \, = & effective \, equivalent \, axial \, load \, during \, phase \, n & (N) \\ & F_n & = & axial \, load \, during \, phase \, n & (N) \\ & X_{pr} & = & preload \, factor & (-) \end{array}$$

$$\begin{split} F_m &= \sqrt[3]{\left|F_{eff\,1}\right|^3} \cdot \frac{q_{t1}}{100\%} + \left|F_{eff\,2}\right|^3 \cdot \frac{q_{t2}}{100\%} + ... + \left|F_{eff\,n}\right|^3 \cdot \frac{q_{tn}}{100\%} \quad 2 \\ & F_{eff\,1}, F_{eff\,2}, ... F_{eff\,n} = \text{ effective equivalent axial load} \\ & \text{during phases 1 ... n} \quad (N) \\ F_m &= \text{equivalent dynamic axial load} \quad (N) \\ & q_{t1}, q_{t2}, ... q_{tn} &= \text{discrete time step for } F_{eff\,1}, ... F_{eff\,n} \quad (\%) \end{split}$$

$$\begin{split} F_{m} &= \sqrt[3]{\left|F_{eff \, 1}\right|^{3} \cdot \frac{\left|n_{1}\right|}{n_{m}} \cdot \frac{q_{t1}}{100\%} + \left|F_{eff \, 2}\right|^{3} \cdot \frac{\left|n_{2}\right|}{n_{m}} \cdot \frac{q_{t2}}{100\%} + ... + \left|F_{eff \, n}\right|^{3} \cdot \frac{\left|n_{n}\right|}{n_{m}} \cdot \frac{q_{tn}}{100\%}} 3} \\ F_{eff \, 1}, F_{eff \, 2}, ... F_{eff \, n} &= effective equivalent axial load \\ during phases 1 ... n & (N) \\ F_{m} &= equivalent dynamic axial load & (N) \\ n_{1}, n_{2}, ... n_{n} &= speeds during phases 1 ... n & (min^{-1}) \\ n_{m} &= average speed & (min^{-1}) \\ q_{t1}, q_{t2}, ... q_{tn} &= discrete time step for F_{eff \, 1} ... F_{eff \, n} & (\%) \end{split}$$

(N)

(N) (–)

Nominal life Service life in revolutions L $L = \left(\frac{C}{F_m}\right)^3 \cdot 10^6 \quad 4 \Rightarrow C = F_m \cdot \sqrt[3]{\frac{L}{10^6}} \quad 5 \Rightarrow F_m = \frac{C}{\sqrt[3]{\frac{L}{10^6}}} \quad 6$ C = dynamic load rating

 F_m = equivalent dynamic axial load

Service life in hours L_{h}

$$L_{h} = \frac{L}{n_{m} \cdot 60} \quad 7 \qquad \qquad \begin{array}{c} L_{h} & = \mbox{ service life} & (h) \\ L & = \mbox{ service life in revolutions} & (-) \\ n_{m} & = \mbox{ average speed} & (min^{-1}) \end{array}$$

$$L_{h \text{ machine}} = L_{h} \cdot \frac{DC_{\text{machine}}}{DC_{\text{PLSA}}} \otimes DC_{\text{machine}} = duty \text{ cycle of the machine} (\%)$$

$$DC_{\text{PLSA}} = duty \text{ cycle of the PLSA} (\%)$$

$$DC_{\text{PLSA}} = duty \text{ cycle of the PLSA} (\%)$$

$$L_{h \text{ machine}} = nominal \text{ service life} (h)$$

$$L_{h} = nominal \text{ service life} (h)$$

Drive torque and drive power

Drive torque M_{ta}

Transmitted torque M_{te}

for conversion of rotary motion into linear motion:

for conversion of linear motion into

(N) F_L = thrust force $M_{ta} = \frac{F_L \cdot P}{2000 \cdot \pi \cdot \eta} 9$ $M_p = maximum permissible$ (Nm) drive torque $M_{ta} = drive torque$ (Nm) $M_{ta} \leq M_{p}$ Р = lead (mm) = mech. efficiency (approx. 0.8) η (-) F_L = thrust force (N) $M_{te} = \frac{F_L \cdot P \cdot \eta'}{2000 \cdot \pi} \quad 10$ $M_p = maximum permissible$ drive torque (Nm) $M_{te} \leq M_{p}$ M_{te} = transmitted torque (Nm) Ρ = lead (mm) η' = mech. efficiency (η' approx. 0.7) (-)

The dynamic drag torque must be taken into account for preloaded nuts.

$P_{a} = \frac{M_{ta} \cdot n}{9550} 11$	$M_{ta} = drive torque$ n = speed $P_a = drive power$	(Nm) (min⁻¹) (kW)
---	---	-------------------------

Drive power P_a

rotary motion:

Design Calculations

Design Calculations

Calculation example Service life

Operating conditions

The service life of the machine should be 40,000 operating hours with the PLSA operating 60% of the time.

Calculation procedure

Average speed \mathbf{n}_{m}

Proposed PLSA: 30 x 5, tolerance grade T5

$$n_{m} = \frac{6}{100} \cdot |10| + \frac{22}{100} \cdot |30| + \frac{47}{100} \cdot |100| + \frac{25}{100} \cdot |1000| \quad 1$$

$$n_{m} = 304 \text{ min}^{-1}$$

Average load $\mathbf{F}_{\mathbf{m}}$ for variable load and variable speed

$F_{m} = \sqrt[3]{\left 50000\right ^{3} \frac{ 10 }{304} \cdot \frac{6}{100} + \left 25000\right ^{3} \frac{ 30 }{304} \cdot \frac{22}{100} + \left 8000\right ^{3} \frac{ 100 }{304} \cdot \frac{47}{100} + \left 2000\right ^{3} \frac{ 1000 }{304} \cdot \frac{25}{100}}{304} \cdot \frac{25}{100}}$	
F _m = 8757 N	

Required service life L (revolutions) The service life L can be calculated by transposing the formulas 7 and 8 :

$$L = L_{h} \cdot n_{m} \cdot 60$$

$$L_{h} = L_{h \text{ machine}} \cdot \frac{DC_{PLSA}}{DC_{machine}}$$

$$L_{h} = 40000 \cdot \frac{60}{100} = 24000 \text{ h}$$

$$L = 24000 \cdot 304 \cdot 60$$

$$L = 437 \ 760 \ 000 \text{ revolutions}$$

Basic dynamic load rating ${\bf C}$

C =
$$8757 \cdot \sqrt[3]{\frac{437\ 760\ 000}{10^6}}$$
 5 C ≈ 66492 N

Result and selection

The PLSA can now be selected from the Dimension Tables:

e.g. PLSA, size 30 x 5 R, with flanged single nut FEM-E-S, and screw in tolerance grade T5 Dynamic load rating C = 87 KN.

Note: Take into account the dynamic load rating of the screw end bearing used! Consider the correction factor for the tolerance grade!

 $L \approx 981 \cdot 10^6$ revolutions

Cross check

Service life of the selected PLSA in revolutions

$L = \left(\frac{87\ 000}{8757}\right)^3 \cdot 10^6 \qquad 4$	L=	$\left[\frac{87\ 000}{8757}\right]^3$	· 10 ⁶	4	
---	----	---------------------------------------	-------------------	---	--

The life of the selected PLSA assembly is thus greater than the required service life of 24,000 hours (including operating hours).

Service life in hours Lh

$L_{h} = \frac{981 \cdot 10^{6}}{304 \cdot 60}$	7
$L_{h} \approx 57~761$	hours

Design Calculations

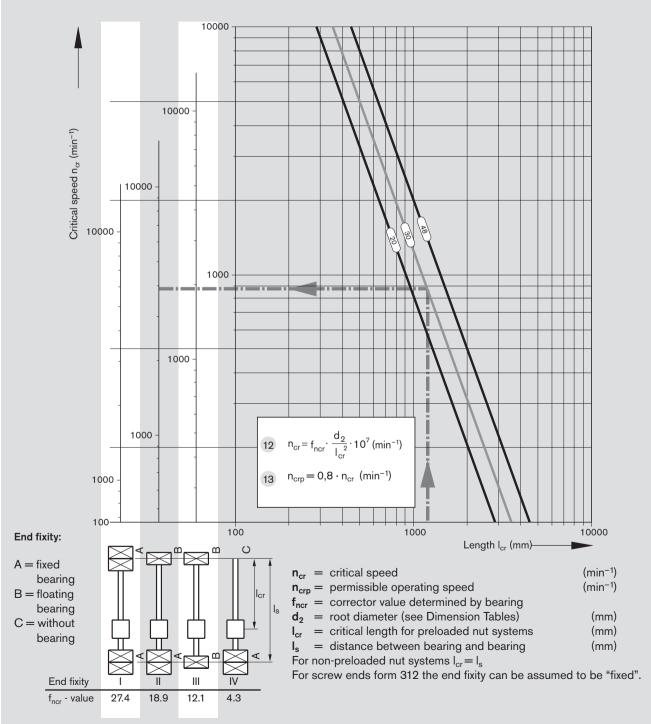
Critical speed n_{cr}

The critical speed n_{cr} depends on the diameter of the screw, the type of end fixity and the free length l_{cr} .

Example

Screw diameter	=	63 mm
Length I _{cr}	=	1200 mm
		de de la contra de la contra de

End fixity II (fixed bearing - floating bearing)


No allowance must be made for guidance by a nut without preload. The operating speed should not reach more than 80% of the critical speed.

According to the graph, the critical speed is 3900 min^{-1} .

The permissible operating speed is thus $3900 \text{ min}^{-1} \times 0.8 = 3120 \text{ min}^{-1}$.

The characteristic speed and the max. permissible linear speed must be taken into account, see "Technical Notes".

The maximum operating speed in our calculation example of $n_4 = 1000 \text{ min}^{-1}$ is therefore below the permissible operating speed.

Permissible axial load on screw F_c (buckling load)

Example Screw diameter 30 mm, Length I_c 1200 mm = End fixity IV (fixed bearing - floating bearing) $F_{c} = f_{Fc} \cdot \frac{d_{2}^{4}}{l_{c}^{2}} \cdot 10^{4} (N)$ 14 $F_{cp} = \frac{F_c}{2}(N)$

 $\mathbf{F_{cp}}$ = permissible axial load during operation

15

- = corrector value determined by f_{Fc} bearing
- = root diameter (mm), see Dimension d_2 Tables
- unsupported threaded length (mm) I_c

End fixity	f _{Fc} - value		
	nut fixed	nut lose	
	End fixity I 40,6	End fixity IV 20,4	
C-C	End fixity II / IV 20,4	End fixity V 10,2	
	End fixity III / VI 2,6		
		End fixity VI 2,6	

f_{Fc}- value

2.6

10.2

20.4

40.6

III / VI

V

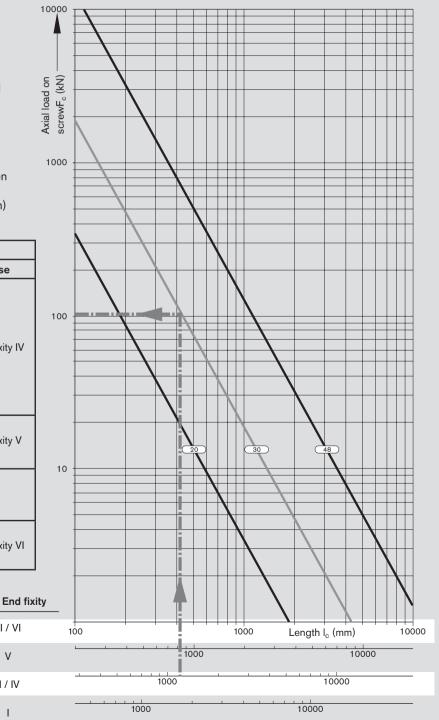
II / IV

Т

End fixity:

A = fixed bearing

B = floating bearing


C = without bearing

The permissible axial load on the screw F_c depends on the diameter of the screw, the type of end fixity and the

According to the graph, the theoretically permissible axial load is 115 kN. A permissible axial load on the screw of 115 kN / : 2 = 57.5 kN is achieved when applying the safety factor 2.

effective free (unsupported) length l_c. A safety factor of $s \ge 2$ should be taken into consideration when determining the permissible axial load.

This therefore lies above the maximum operating load of $F_1 = 50$ kN used in our calculation example.

End Bearings

Design Calculations

Resulting and equivalent bearing loads

For angular-contact thrust ball bearings LGN and LFG

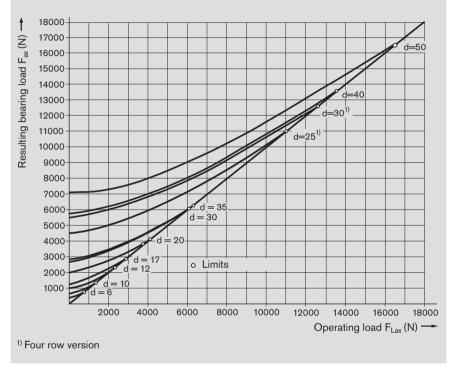
Angular-contact thrust ball bearings are preloaded. The chart shows the resulting axial bearing load F_{ax} as a function of preload and axial operating load F_{Lax} . For a purely axial load $F_{comb} = F_{ax}$.

$\alpha = 60^{\circ}$	X	Y
$\frac{F_{ax}}{F_{rad}} \le 2.17$	1.90	0.55
$\frac{F_{ax}}{F_{rad}} > 2.17$	0.92	1.00

 α = pressure angle

- F_{ax} = resulting bearing load
- F_{Lax} = operating load
- X, Y = dimensionless factor

If the radial operating forces are not insignificant, the equivalent bearing loads are calculated according to formula 20.


Bearings for PLSAs are also able to accommodate tilting moments. As a rule, the moments that usually occur due to the weight and drive motion of the screw do not need to be incorporated in the calculation of the equivalent bearing load.

Permissible static axial load for bearing series LGF

The permissible static axial load of LGF-series bearings in screw-down direction is:

$$F_{comb} = X \cdot F_{rad} + Y \cdot F_{ax} \quad 20 \qquad \qquad F_{ax} = resulting axial bearing load \quad (N) \\ F_{comb} = combined equivalent \\ bearing load \qquad (N) \\ F_{rad} = radial bearing load \qquad (N)$$

Internal preload limit and resulting bearing load

 $F_{0ax p} \le \frac{C_0}{2}$ $F_{0ax p} = permissible static axial bearing load (N)$

The static axial load rating C₀ is stated in the Dimension Tables.

Average speed and average bearing load

When the bearing load varies in steps over a specific period of time, calculate the dynamic equivalent bearing load using formula 22.

When the speed varies, use formula 23 . In these formulas \boldsymbol{q}_t denotes the discrete time steps for the individual phases in %.

$F_m = \sqrt[3]{F_{comb1}}^3$.	$\frac{ \mathbf{n}_1 }{\mathbf{n}_m} \cdot \frac{\mathbf{q}_{11}}{100} + \mathbf{F}_{comb2}^3 \cdot \frac{ \mathbf{n}_2 }{\mathbf{n}_m} \cdot \frac{\mathbf{q}_{12}}{100} + \dots + \mathbf{F}_{combn}^3 \cdot \frac{ \mathbf{n}_n }{\mathbf{n}_m}$	
$n_{m} = \frac{q_{t1}}{100} \cdot n_{1} +$	$\frac{q_{t2}}{100} \cdot n_2 + + \frac{q_{tn}}{100} \cdot n_n 23$	
F _{comb1} F _{com}	_{bn} = combined equivalent axial load	
	in phases 1 n	(N)
F _m	 dynamic equivalent bearing load 	(N)
n ₁ n _n	= speeds in phases 1 n	(min ⁻¹)
n _m	= average speed	(min ⁻¹)
q _{t1} q _{tn}	= discrete time steps in phases 1 n	(%)

Service life and load safety factor

Nominal life

The nominal life is calculated as follows:

Note:

Take into account the dynamic load rating of the nut!

$$\begin{split} L = & \left[\frac{C}{F_{comb}} \right]^3 \cdot 10^6 & 24 & C & = dynamic bearing load rating & (N) \\ F_{comb} & = combined equivalent bearing load & (N) \\ L & = nominal service life in revolutions & (-) \\ L_h & = nominal service life in operating hours & (h) \\ L_h & = average speed & (min^{-1}) \\ \end{split}$$

Static load safety factor

The static load safety factor for machine tools should not be lower than 4.

Co	F _{0max} = maximum static load	(N)
$S_0 = \frac{S_0}{\Gamma}$ 26	C_0 = static load rating	(N)
Fomax	S_0 = static load safety factor	(-)

Design Calculation Service Form

Bosch Rexroth AG Linear Motion and Assembly Technologies 97419 Schweinfurt / Germany Find your local contact person here: www.boschrexroth.com/addresses

Application:	New design	Revised design	

Operating conditions

Loads (N)	Speeds (1/min)	Discrete time steps (%)
F ₁ =	at $n_1 =$	for $q_1 =$
$F_2 =$	at $n_2 =$	for $q_2 =$
F ₃ =	at n ₃ =	for $q_3 =$
$F_4 =$	at $n_4 =$	for $q_4 =$
F ₅ =	at n ₅ =	for $q_5 =$
F ₆ =	at n ₆ =	for $q_6 =$
Average load (see page 57)	Average speed (see page 57)	Sum of time steps
F _m =	n _m =	Q = 100%
Maximum static load:	N	
Required service life	Operating hours or	x 10 ⁶ PLSA revolutions
0		
Screw end fixity: horizontal	vertical	
		A = fixed bearing
Screw end fixity	Selected:	B = floating bearing
АВВС		C = without bearing
	Installation conditions (enclose	
	drawings/sketches if possible!)	
	Drawing enclosed	
网络马马		
$\boxtimes\boxtimes\boxtimes\boxtimes\boxtimes$		
A A B A		
() () () () () () () () () () () () () (/55)	
Type of lubrication:		
Operating temperature: °C	- min/max. / °C	
Exceptional operating conditions:		
Sender		
OEM User Distributor		
Company	Name	
Address	Department	
	 Telephone	
	Fax	
	e-mail	

Bosch Rexroth AG Linear Motion and Assembly Technologies 97419 Schweinfurt / Germany

Inquiry/Order Form

Comments:

For elucidations, see page 8/9.

Note: The processing of Inquiries/Orders based on customer drawings is also possible of course. **Example of an order**

	1	PLSA	FEM-E-S	20 x 5R	1	2	Τ7	R	812Z120	412Z120	1250	1	1	
--	---	------	---------	---------	---	---	----	---	---------	---------	------	---	---	--

	PLSA	х х -							
--	------	-------	--	--	--	--	--	--	--

<u> </u>					
Sender					
OEM	User	Distributor 🗌			
Company			Name		
Address			Department		
/1441000			Telephone		
			Fax		
			e-mail		
			-		

Find your local contact person here: www.boschrexroth.com/addresse

Bosch Rexroth AG Ernst-Sachs-Straße 100 97424 Schweinfurt, Germany Tel. +49 9721 937-0 Fax +49 9721 937-275 www.boschrexroth.com

Find your local contact person here: www.boschrexroth.com/addresses

Subject to technical modifications © Bosch Rexroth AG 2012 Printed in Germany R310EN 3308 (2011-09) EN • DC-IA/MKT